博客
关于我
工程搭建 打算采用idea maven项目 遇到问题 spark dataset和dataframe问题
阅读量:638 次
发布时间:2019-03-14

本文共 598 字,大约阅读时间需要 1 分钟。

Spark DataFrames和DS (DataSets)是Spark程序中处理数据的核心数据结构,自Spark 1.3.0版本发布以来,随着技术的不断演进,DS逐渐成为新的默认数据处理模式。在Spark 1.6.0版本中,DS被引入,且在Spark 2.0版本中,DataFrame和DataSet ultimately merged into DataSet,进一步简化了数据处理流程。这两种数据结构基于Spark的核心计算模型-Resilient Distributed Dataset (RDD),使它们能够以不同方式支持各种数据处理需求,并通过简单的API实现无缝转换。

DataFrames和DSs都基于RDD,支持灵活而高效的数据操作。选择使用哪种数据结构取决于工作流程的具体需求:如果需要灵活地处理各种数据类型(包括非结构化数据),则DataFrames可能更适合;而如果优化处理高性能计算任务,DSs则提供了更强大的性能支持。这种灵活性使得在Spark程序中无缝切换DataFrames和DSs成为可能,从而让开发者能够根据项目需求选择最合适的数据处理工具。

Spark在不断更新中不断优化了对数据处理的支持,提升了数据操作的效率和性能。无论是处理结构化数据还是非结构化数据,Spark都能通过DataFrames和DSs提供强大的支持,帮助开发者高效完成数据分析和处理任务。

转载地址:http://gmblz.baihongyu.com/

你可能感兴趣的文章
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>